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Abstract
Identifying the salience (i.e. importance) of
discourse units is an important task in lan-
guage understanding. While events play im-
portant roles in text documents, little research
exists on analyzing their saliency status. This
paper empirically studies the Event Salience
task and proposes two salience detection mod-
els based on content similarities and discourse
relations. The first is a feature based salience
model that incorporates similarities among dis-
course units. The second is a neural model
that captures more complex relations between
discourse units. Tested on our new large-
scale event salience corpus, both methods
significantly outperform the strong frequency
baseline, while our neural model further im-
proves the feature based one by a large mar-
gin. Our analyses demonstrate that our neu-
ral model captures interesting connections be-
tween salience and discourse unit relations
(e.g., scripts and frame structures).

1 Introduction

Automatic extraction of prominent information
from text has always been a core problem in lan-
guage research. While traditional methods mostly
concentrate on the word level, researchers start
to analyze higher-level discourse units in text,
such as entities (Dunietz and Gillick, 2014) and
events (Choubey et al., 2018).

Events are important discourse units that form
the backbone of our communication. They play
various roles in documents. Some are more central
in discourse: connecting other entities and events,
or providing key information of a story. Others
are less relevant, but not easily identifiable by NLP
systems. Hence it is important to be able to quantify
the “importance” of events. For example, Figure 1
is a news excerpt describing a debate around a
jurisdiction process: “trial” is central as the main
discussing topic, while “war” is not.

Figure 1: Examples annotations. Underlying words
are annotated event triggers; the red bold ones are
annotated as salient.

Researchers are aware of the need to identify
central events in applications like detecting salient
relations (Zhang et al., 2015), and identifying cli-
max in storyline (Vossen and Caselli, 2015). Gener-
ally, the salience of discourse units is important for
language understanding tasks, such as document
analysis (Barzilay and Lapata, 2008), information
retrieval (Xiong et al., 2018), and semantic role
labeling (Cheng and Erk, 2018). Thus, proper mod-
els for finding important events are desired.

In this work, we study the task of event salience
detection, to find events that are most relevant to
the main content of documents. To build a salience
detection model, one core observation is that salient
discourse units are forming discourse relations. In
Figure 1, the “trial” event is connected to many
other events: “charge” is pressed before “trial”;
“trial” is being “delayed”.

We present two salience detection systems based
on the observations. First is a feature based learn-
ing to rank model. Beyond basic features like fre-
quency and discourse location, we design features
using cosine similarities among events and enti-
ties, to estimate the content organization (Grimes,
1975): how lexical meaning of elements relates
to each other. Similarities from within-sentence
or across the whole document are used to capture

ar
X

iv
:1

80
9.

00
64

7v
1 

 [
cs

.C
L

] 
 3

 S
ep

 2
01

8



interactions on both local and global aspects (§4).
The model significantly outperforms a strong “Fre-
quency” baseline in our experiments.

However, there are other discourse relations be-
yond lexical similarity. Figure 1 showcases some:
the script relation (Schank and Abelson, 1977)1

between “charge” and “trial”, and the frame re-
lation (Baker et al., 1998) between “attacks” and
“trial” (“attacks” fills the “charges” role of “trial”).
Since it is unclear which ones contribute more to
salience, we design a Kernel based Centrality Esti-
mation (KCE) model (§5) to capture salient specific
interactions between discourse units automatically.

In KCE, discourse units are projected to embed-
dings, which are trained end-to-end towards the
salience task to capture rich semantic information.
A set of soft-count kernels are trained to weigh
salient specific latent relations between discourse
units. With the capacity to model richer relations,
KCE outperforms the feature-based model by a
large margin (§7.1). Our analysis shows that KCE
is exploiting several relations between discourse
units: including script and frames (Table 5). To
further understand the nature of KCE, we conduct
an intrusion test (§6.2), which requires a model to
identify events from another document. The test
shows salient events form tightly related groups
with relations captured by KCE.

The notion of salience is subjective and may vary
from person to person. We follow the empirical ap-
proaches used in entity salience research (Dunietz
and Gillick, 2014). We consider the summarization
test: an event is considered salient if a summary
written by a human is likely to include it, since
events about the main content are more likely to
appear in a summary. This approach allows us to
create a large-scale corpus (§3).

In this paper, we make three main contributions.
First, we present two event salience detection sys-
tems, which capture rich relations among discourse
units. Second, we observe interesting connections
between salience and various discourse relations
(§7.1 and Table 5), implying potential research on
these areas. Finally, we construct a large scale
event salience corpus, providing a testbed for fu-
ture research. Our code, dataset and models are
publicly available2.

1Scripts are prototypical sequences of events: a restaurant
script normally contains events like “order”, “eat” and “pay”.

2https://github.com/hunterhector/
EventSalience

2 Related Work

Events have been studied on many aspects due to
their importance in language. To name a few: event
detection (Li et al., 2013; Nguyen and Grishman,
2015; Peng et al., 2016), coreference (Liu et al.,
2014; Lu and Ng, 2017), temporal analysis (Do
et al., 2012; Chambers et al., 2014), sequenc-
ing (Araki et al., 2014), script induction (Chambers
and Jurafsky, 2008; Balasubramanian et al., 2013;
Rudinger et al., 2015; Pichotta and Mooney, 2016).

However, studies on event salience are prema-
ture. Some previous work attempts to approximate
event salience with word frequency or discourse
position (Vossen and Caselli, 2015; Zhang et al.,
2015). Parallel to ours, Choubey et al. (2018) pro-
pose a task to find the most dominant event in news
articles. They draw connections between event
coreference and importance, on hundreds of closed-
domain documents, using several oracle event at-
tributes. In contrast, our proposed models are fully
learned and applied on more general domains and
at a larger scale. We also do not restrict to a single
most important event per document.

There is a small but growing line of work on
entity salience (Dunietz and Gillick, 2014; Dojchi-
novski et al., 2016; Xiong et al., 2018; Ponza et al.,
2018). In this work, we study the case for events.

Text relations have been studied in tasks like
text summarization, which mainly focused on co-
hesion (Halliday and Hasan, 1976). Grammati-
cal cohesion methods make use of document level
structures such as anaphora relations (Baldwin and
Morton, 1998) and discourse parse trees (Marcu,
1999). Lexical cohesion based methods focus on
repetitions and synonyms on the lexical level (Sko-
rochod’ko, 1971; Morris and Hirst, 1991; Erkan
and Radev, 2004). Though sharing similar intu-
itions, our proposed models are designed to learn
richer semantic relations in the embedding space.

Comparing to the traditional summarization task,
we focus on events, which are at a different granu-
larity. Our experiments also unveil interesting phe-
nomena among events and other discourse units.

3 The Event Salience Corpus

This section introduces our approach to construct a
large-scale event salience corpus, including meth-
ods for finding event mentions and obtaining
saliency labels. The studies are based on the Anno-
tated New York Times corpus (Sandhaus, 2008), a
newswire corpus with expert-written abstracts.

https://github.com/hunterhector/EventSalience
https://github.com/hunterhector/EventSalience


3.1 Automatic Corpus Creation

Event Mention Annotation: Despite many anno-
tation attempts on events (Pustejovsky et al., 2002;
Brown et al., 2017), automatic labeling of them in
general domain remains an open problem. Most
of the previous work follows empirical approaches.
For example, Chambers and Jurafsky (2008) con-
sider all verbs together with their subject and ob-
ject as events. Do et al. (2011) additionally in-
clude nominal predicates, using the nominal form
of verbs and lexical items under the Event frame in
FrameNet (Baker et al., 1998).

There are two main challenges in labeling event
mentions. First, we need to decide which lexi-
cal items are event triggers. Second, we have to
disambiguate the word sense to correctly identify
events. For example, the word “phone” can re-
fer to an entity (a physical phone) or an event (a
phone call event). We use FrameNet to solve these
problems. We first use a FrameNet based parser:
Semafor (Das and Smith, 2011), to find and disam-
biguate triggers into frame classes. We then use the
FrameNet ontology to select event mentions.

Our frame based selection method follows the
Vendler classes (Vendler, 1957), a four way clas-
sification of eventuality: states, activities, accom-
plishments and achievements. The last three classes
involve state change, and are normally considered
as events. Following this, we create an “event-
evoking frame” list using the following procedure:

1. We keep frames that are subframes of Event
and Process in the FrameNet ontology.

2. We discard frames that are subframes of state,
entity and attribute frames, such as Entity, At-
tributes, Locale, etc.

3. We manually inspect frames that are not sub-
frames of the above-mentioned ones (around
200) to keep event related ones (including sub-
frames), such as Arson, Delivery, etc.

This gives us a total of 569 frames. We parse the
documents with Semafor and consider predicates
that trigger a frame in the list as candidates. We
finish the process by removing the light verbs3 and
reporting events4 from the candidates, similar to
previous research (Recasens et al., 2013).
Salience Labeling: For all articles with a human
written abstract (around 664,911) in the New York

3Light verbs carry little semantic information: “appear”,
“be”, “become”, “do”, “have”, “seem”, “do”, “get”, “give”,
“go”, “have”, “keep”, “make”, “put”, “set”, “take”.

4Reporting verbs are normally associated with the narrator:
“argue”, “claim”, “say”, “suggest”, “tell”.

Train Dev Test

# Documents 526126 64000 63589

Avg. # Word 794.12 790.27 798.68

Avg. # Events 61.96 60.65 61.34

Avg. # Entities 197.63 196.95 198.40

Avg. # Salience 8.77 8.79 8.90

Table 1: Dataset Statistics.

Times Annotated Corpus, we extract event men-
tions. We then label an event mention as salient if
we can find its lemma in the corresponding abstract
(Mitamura et al. (2015) showed that lemma match-
ing is a strong baseline for event coreference.). For
example, in Figure 1, event mentions in bold and
red are found in the abstract, thus labeled as salient.
Data split is detailed in Table 1 and §6.

3.2 Annotation Quality
While the automatic method enables us to create
a dataset at scale, it is important to understand the
quality of the dataset. For this purpose, we have
conducted two small manual evaluation study.

Our lemma-based salience annotation method
is based on the assumption that lemma matching
being a strong detector for event coreference. In
order to validate this assumption, one of the authors
manually examined 10 documents and identified
82 coreferential event mentions pairs between the
text body and the abstract. The automatic lemma
rule identifies 72 such pairs: 64 of these matches
human decision, producing a precision of 88.9%
(64/72) and a recall of 78% (64/82). There are 18
coreferential pairs missed by the rule.

The next question is: is an event really important
if it is mentioned in the abstract? Although prior
work (Dunietz and Gillick, 2014) shows that the as-
sumption to be valid for entities, we study the case
for events. We asked two annotators to manually
annotate 10 documents (around 300 events) using
a 5-point Likert scale for salience. We compute
the agreement score using Cohen’s Kappa (Cohen,
1960). We find the task to be challenging for hu-
man: annotators don’t agree well on the 5-point
scale (Cohens Kappa = 0.29). However, if we col-
lapse the scale to binary decisions, the Kappa be-
tween the annotators raises to 0.67. Further, the
Kappa between each annotator and automatic la-
bels are 0.49 and 0.42 respectively. These agree-
ment scores are also close to those reported in the
entity salience tasks (Dunietz and Gillick, 2014).



While errors exist in the automatic annotation
process inevitably, we find the error rate to be rea-
sonable for a large-scale dataset. Further, our study
indicates the difficulties for human to rate on a
finer scale of salience. We leave the investigation
of continuous salience scores to future work.

4 Feature-Based Event Salience Model

This section presents the feature-based model, in-
cluding the features and the learning process.

4.1 Features

Our features are summarized in Table 2.
Basic Discourse Features: We first use two ba-
sic features similar to Dunietz and Gillick (2014):
Frequency and Sentence Location. Frequency is
the lemma count of the mention’s syntactic head
word (Manning et al., 2014). Sentence Loca-
tion is the sentence index of the mention, since
the first few sentences are normally more impor-
tant. These two features are often used to estimate
salience (Barzilay and Lapata, 2008; Vossen and
Caselli, 2015).
Content Features: We then design several lexical
similarity features, to reflect Grimes’ content relat-
edness (Grimes, 1975). In addition to events, the
relations between events and entities are also im-
portant. For example, Figure 1 shows some related
entities in the legal domain, such as “prosecutors”
and “court”. Ideally, they should help promote the
salience status for event “trial”.

Lexical relations can be found both within-
sentence (local) or across sentence (global) (Hal-
liday and Hasan, 1976). We compute the local
part by averaging similarity scores from other units
in the same sentence. The global part is com-
puted by averaging similarity scores from other
units in the document. All similarity scores are
computed using cosine similarities on pre-trained
embeddings (Mikolov et al., 2013).

These lead to 3 content features: Event Voting,
the average similarity to other events in the docu-
ment; Entity Voting, the average similarity to en-
tities in the document; Local Entity Voting, the
average similarity to entities in the same sentence.
Local event voting is not used since a sentence
often contains only 1 event.

4.2 Model

A Learning to Rank (LeToR) model (Liu, 2009)
is used to combine the features. Let evi denote

the ith event in a document d. Its salience score is
computed as:

f(evi, d) = Wf · F (evi, d) + b (1)

where F (evi, d) is the features for evi in d (Ta-
ble 2); Wf and b are the parameters to learn.

The model is trained with pairwise loss:∑
ev+,ev−∈d

max(0, 1− f(ev+, d) + f(ev−, d)), (2)

w.r.t. y(ev+, d) = +1 & y(ev−, d) = −1.

y(ei, d) =

{
+1, if ei is a salient entity in d,
−1, otherwise.

where ev+ and ev− represent the salient and non-
salient events; y is the gold standard function.
Learning can be done by standard gradient meth-
ods.

5 Neural Event Salience Model

As discussed in §1, the salience of discourse units
is reflected by rich relations beyond lexical simi-
larities, for example, script (“charge” and “trial”)
and frame (a “trial” of “attacks”). The relations
between these words are specific to the salience
task, thus difficult to be captured by raw cosine
scores that are optimized for word similarities. In
this section, we present a neural model to exploit
the embedding space more effectively, in order to
capture relations for event salience estimation.

5.1 Kernel-based Centrality Estimation
Inspired by the kernel ranking model (Xiong et al.,
2017), we propose Kernel-based Centrality Estima-
tion (KCE), to find and weight semantic relations
of interests, in order to better estimate salience.

Formally, given a document d, the set of anno-
tated events V = {ev1, . . . evi . . . , evn}, KCE first

embed an event into vector space: evi
Emb−−−→ −→evi.

The embedding function is initialized with pre-
trained embeddings. It then extract K features
for each evi:

ΦK(evi,V) = {φ1(−→evi,V), . . . , (3)

φk(−→evi,V), . . . , φK(−→evi,V)},

φk(−→evi,V) =
∑

evj∈V

exp

(
− (cos(−→evi,−→evj)− µk)

2

2σ2
k

)
.

(4)



Name Description

Frequency The frequency of the event lemma in document.
Sentence Location The location of the first sentence that contains the event.

Event Voting Average cosine similarity with other events in document.
Entity Voting Average cosine similarity with other entities in document.
Local Entity Voting Average cosine similarity with entities in the sentence.

Table 2: Event Salience Features.

φk(−→evi,V) is the k-th Gaussian kernel with mean
µk and variance σ2k. It models the interactions be-
tween events in its kernel range defined by µk and
σk. ΦK(evi,V) enforces multi-level interactions
among events — relations that contribute similarly
to salience are expected to be grouped into the same
kernels. Such interactions greatly improve the ca-
pacity of the model with negligible increase in the
number of parameters. Empirical evidences (Xiong
et al., 2017) have shown that kernels in this form
are effective to learn weights for task-specific term
pairs.

The final salience score is computed as:

f(evi, d) = Wv · ΦK(evi,V) + b, (5)

where Wv is learned to weight the contribution of
the certain relations captured by each kernel.

We then use the exact same learning objective
as in equation (2). The pairwise loss is first back-
propagated through the network to update the ker-
nel weights Wv, assigning higher weights to rele-
vant regions. Then the kernels use the gradients
to update the embeddings, in order to capture the
meaningful discourse relations for salience.

Since the features and KCE capture different as-
pects, combining them may give superior perfor-
mance. This can be done by combining the two
vectors in the final linear layer:

f(evi, d) = Wv · ΦK(evi,V) +Wf · F (evi, d) + b (6)

5.2 Integrating Entities into KCE
KCE is also used to model the relations between
events and entities. For example, in Figure 1,
the entity “court” is a frame element of the event
“trial”; “United States” is a frame element of the
event “war”. It is not clear which pair contributes
more to salience. We again let KCE to learn it.

Formally, let E be the list of entities in the doc-
ument, i.e. E = {en1, . . . , eni, . . . , enn}, where

eni is the ith entity in document d. KCE extracts
the kernel features about entity-event relations as
follows:

ΦK(evi,E) = {φ1(−→evi,E), . . . , (7)

φk(−→evi,E), . . . , φK(−→evi,E)},

φk(−→evi,E) =
∑

enj∈E

exp

(
− (cos(−→evi,−→enj)− µk)

2

2σ2
k

)
(8)

similarly, eni is embedded by: eni
Emb−−−→ −→eni,

which is initialized by pre-trained entity embed-
dings.

We reach the full KCE model by combining all
the vectors using a linear layer:

f(evi, d) = We · ΦK(evi,E) +Wv · ΦK(evi,V)

+Wf · F (evi, d) + b (9)

The model is again trained by equation (2).

6 Experimental Methodology

This section describes our experiment settings.

6.1 Event Salience Detection
Dataset: We conduct our experiments on the
salience corpus described in §3. Among the
664,911 articles with abstracts, we sample 10%
of the data as the test set and then randomly leave
out another 10% documents for development. Over-
all, there are 4359 distinct event lexical items, at a
similar scale with previous work (Chambers and Ju-
rafsky, 2008; Do et al., 2011). The corpus statistics
are summarized in Table 1.
Input: The inputs to models are the documents
and the extracted events. The models are required
to rank the events from the most to least salience.
Baselines: Three methods from previous re-
searches are used as baselines: Frequency, Loca-
tion and PageRank. The first two are often used



to simulate saliency (Barzilay and Lapata, 2008;
Vossen and Caselli, 2015). The Frequency baseline
ranks events based on the count of the headword
lemma; the Location baseline ranks events using
the order of their appearances in discourse. Ties
are broken randomly.

Similar to entity salience ranking with PageRank
scores (Xiong et al., 2018), our PageRank baseline
runs PageRank on a fully connected graph whose
nodes are the events in documents. The edges are
weighted by the embedding similarities between
event pairs. We conduct supervised PageRank on
this graph, using the same pairwise loss setup as
in KCE. We report the best performance obtained
by linearly combining Frequency with the scores
obtained after a one-step random walk.
Evaluation Metric: Since the importance of
events is on a continuous scale, the boundary be-
tween “important” and “not important” is vague.
Hence we evaluate it as a ranking problem. The
metrics are the precision and recall value at 1, 5
and 10 respectively. It is adequate to stop at 10
since there are less than 9 salient events per doc-
ument on average (Table 1). We also report Area
Under Curve (AUC). Statistical significance values
are tested by permutation (randomization) test with
p < 0.05.
Implementation Details: We pre-trained word
embeddings with 128 dimensions on the whole
Annotated New York Times corpus using
Word2Vec (Mikolov et al., 2013). Entities are ex-
tracted using the TagMe entity linking toolkit (Fer-
ragina and Scaiella, 2010). Words or entities that
appear only once in training are replaced with spe-
cial “unknown” tokens.

The hyper-parameters of the KCE kernels follow
previous literature (Xiong et al., 2017). There is
one exact match kernel (µ = 1, σ = 1e−3) and
ten soft-match kernels evenly distributed between
(−1, 1), i.e. µ ∈ {−0.9,−0.7, . . . , 0.9}, with the
same σ = 0.1.

The parameters of the models are optimized by
Adam (Kingma and Ba, 2015), with batch size
128. The vectors of entities are initialized by the
pre-trained embeddings. Event embeddings are
initialized by their headword embedding.

6.2 The Event Intrusion Test: A Study

KCE is designed to estimate salience by modeling
relations between discourse units. To better under-
stand its behavior, we design the following event

intrusion test, following the word intrusion test
used to assess topic model quality (Chang et al.,
2009).
Event Intrusion Test: The test will present to a
model a set of events, including: the origins, all
events from one document; the intruders, some
events from another document. Intuitively, if events
inside a document are organized around the core
content, a model capturing their relations well
should easily identify the intruder(s).

Specifically, we take a bag of unordered events
{O1, O2, . . . , Op}, from a document O, as the ori-
gins. We insert into it intruders, events drawn
from another document, I: {I1, I2, . . . , Iq}. We
ask a model to rank the mixed event set M =
{O1, I1, O2, I2, . . .}. We expect a model to rank
the intruders Ii below the origins Oi.
Intrusion Instances: From the development set,
we randomly sample 15,000 origin and intruding
document pairs. To simplify the analysis, we only
take documents with at least 5 salient events. The
intruder events, together with the entities in the
same sentences, are added to the origin document.
Metrics: AUC is used to quantify ranking quality,
where events in O are positive and events in I are
negative. To observe the ranking among the salient
origins, we compute a separate AUC score between
the intruders and the salient origins, denoted as SA-
AUC. In other words, SA-AUC is the AUC score
on the list with non-salient origins removed.
Experiments Details: We take the full KCE model
to compute salient scores for events in the mixed
event set M , which are directly used for ranking.
Frequency is recounted. All other features (Table 2)
are set to 0 to emphasize the relational aspects,

We experiment with two settings: 1. adding only
the salient intruders. 2. adding only the non-salient
intruders. Under both settings, the intruders are
added one by one, allowing us to observe the score
change regarding the number of intruders added.
For comparison, we add a Frequency baseline, that
directly ranks events by the Frequency feature.

7 Evaluation Results

This section presents the evaluations and analyses.

7.1 Event Salience Performance

We summarize the main results in Table 3.
Baselines: Frequency is the best performing base-
line. Its precision at 1 and 5 are higher than 40%.
PageRank performs worse than Frequency on all



Method P@01 P@05 P@10 AUC

Location 0.3555 – 0.3077 – 0.2505 – 0.5226 –
PageRank 0.3628 – 0.3438 – 0.3007 – 0.5866 –
Frequency 0.4542 – 0.4024 – 0.3445 – 0.5732 –

LeToR 0.4753† +4.64% 0.4099† +1.87% 0.3517† +2.10% 0.6373† +11.19%
KCE (-EF) 0.4420 −2.69% 0.4038 +0.34% 0.3464† +0.54% 0.6089† +6.23%
KCE (-E) 0.4861†‡ +7.01% 0.4227†‡ +5.04% 0.3603†‡ +4.58% 0.6541†‡ +14.12%
KCE 0.5049†‡ +11.14% 0.4277†‡ +6.29% 0.3638†‡ +5.61% 0.6557†‡ +14.41%

Method R@01 R@05 R@10 W/T/L

Location 0.0807 – 0.2671 – 0.3792 – –/–/–
PageRank 0.0758 – 0.2760 – 0.4163 – –/–/–
Frequency 0.0792 – 0.2846 – 0.4270 – –/–/–

LeToR 0.0836† +5.61% 0.2980† +4.70% 0.4454† +4.31% 8037 / 48493 / 6770
KCE (-EF) 0.0714 −9.77% 0.2812 −1.18% 0.4321† +1.20% 6936 / 48811 / 7553
KCE (-E) 0.0925†‡ +16.78% 0.3172†‡ +11.46% 0.4672†‡ +9.41% 11676 / 43294 / 8330
KCE 0.0946†‡ +19.44% 0.3215†‡ +12.96% 0.4719†‡ +10.51% 12554 / 41461 / 9285

Table 3: Event salience performance. (-E) and (-F) marks removing Entity information and Features from
the full KCM model. The relative performance differences are computed against Frequency. W/T/L
are the number of documents a method wins, ties, and loses compared to Frequency. † and ‡ mark the
statistically significant improvements over Frequency†, LeToR‡ respectively.

Feature Groups P@1 P@5 P@10 R@1 R@5 R@10 AUC

Loc 0.3548 0.3069 0.2497 0.0807 0.2671 0.3792 0.5226
Frequency 0.4536 0.4018 0.3440 0.0792 0.2846 0.4270 0.5732

+ Loc 0.4734 0.4097 0.3513 0.0835 0.2976 0.4436 0.6354
+ Loc + Event 0.4726 0.4101† 0.3516 0.0831 0.2969 0.4431 0.6365†

+ Loc + Entity 0.4739 0.4100 0.3518 0.0812 0.2955 0.4418 0.6374
+ Loc + Entity + Event 0.4739 0.4100 0.3518† 0.0832 0.2974 0.4452† 0.6374†

+ Loc + Entity + Event + Local 0.4754† 0.4100 0.3517† 0.0837 0.2981 0.4454† 0.6373†

Table 4: Feature Ablation Results. + sign indicates the additional features to Frequency. Loc is the
sentence location feature. Event is the event voting feature. Entity is the entity voting feature. Local
is the local entity voting feature. † marks the statistically significant improvements over + Loc.

the precision and recall metrics. Location performs
the worst.

Feature Based: LeToR outperforms the baselines
significantly on all metrics. Particularly, its P@1
value outperforms the Frequency baseline the most
(4.64%), indicating a much better estimation on
the most salient event. In terms of AUC, LeToR
outperforms Frequency by a large margin (11.19%
relative gain).

Feature Ablation: To understand the contribution
of individual features, we conduct an ablation study
of various feature settings in Table 4. We gradu-
ally add feature groups to the Frequency baseline.
The combination of Location (sentence location)
and Frequency almost sets the performance for the
whole model. Adding each voting feature individu-
ally produces mixed results. However, adding all
voting features improves all metrics. Though the
margin is small, 4 of them are statistically signifi-

cant over Frequency+Location.

Kernel Centrality Estimation: The KCE model
further beats LeToR significantly on all metrics,
by around 5% on AUC and precision values, and by
around 10% on the recall values. Notably, the P@1
score is much higher, reaching 50%. The large
relative gain on all the recall metrics and the high
performance on precision show that KCE works
really well on the top of the rank list.

Kernel Ablation: To understand the source of per-
formance gain of KCE, we conduct an ablation
study by removing its components: -E removes
of entity kernels; -EF removes the entity kernels
and the features. We observe a performance drop
in both cases. Without entities and features, the
model only using event information still performs
similarly to Frequency. The drops are also a reflec-
tion of the small number of events (≈ 60 per docu-
ment) comparing to entities (≈ 200 per document).



Word2Vec KCE

attack kill 0.69 0.3
arrest charge 0.53 0.3
USA (E) war 0.46 0.3
911 attack (E) attack 0.72 0.3
attack trade 0.42 0.9
hotel (E) travel 0.49 0.9
charge murder 0.49 0.7
business (E) increase 0.43 0.7
attack walk 0.44 -0.3
people (E) work 0.40 -0.3

Table 5: Similarities between event entity pairs.
Word2vec shows the cosine similarity in pre-
trained embeddings. KCE lists their closest kernel
mean after training. (E) marks entities.

The study indicates that the relational signals and
features contain different but both important infor-
mation.
Discussion: The superior results of KCE demon-
strate its effectiveness in predicting salience. So
what additional information does it capture? We re-
visit the changes made by KCE: 1. it adjusts the em-
beddings during training. 2. it introduces weighted
soft count kernels. However, the PageRank base-
line also does embedding tuning but produces poor
results, thus the second change should be crucial.
We plot the learned kernel weights of KCE in Fig-
ure 2. Surprisingly, the salient decisions are not
linearly related, nor even positively correlated to
the weights. In fact, besides the “Exact Match”
bin, the highest absolute weights actually appear
at 0.3 and -0.3. This implies that embedding sim-
ilarities do not directly imply salience, breaking
some assumptions of the feature based model and
PageRank.

Figure 2: Learned Kernel Weights of KCE

Case Study: We inspect some pairs of events
and entities in different kernels and list some ex-
amples in Table 5. The pre-trained embeddings
are changed a lot. Pairs of units with different

raw similarity values are now placed in the same
bin. The pairs in Table 3 exhibit interesting types
of relations: e.g.,“arrest-charge” and “attack-kill”
form script-like chains; “911 attack” forms a quasi-
identity relation (Recasens et al., 2010) with “at-
tack”; “business” and “increase” are candidates as
frame-argument structure. While these pairs have
different raw cosine similarities, they are all useful
in predicting salience. KCE learns to gather these
relations into bins assigned with higher weights,
which is not achieved by pure embedding based
methods. The KCE has changed the embedding
space and the scoring functions significantly from
the original space after training. This partially ex-
plains why the raw voting features and PageRank
are not as effective.

7.2 Intrusion Test Results

Figure 3 plots results of the intrusion test . The left
figure shows the results of setting 1: adding non-
salient intruders. The right one shows the results
of setting 2: adding salient intruders. The AUC is
0.493 and the SA-AUC is 0.753 if all intruders are
added.

The left figure shows that KCE successfully finds
the non-salient intruders. The SA-AUC is higher
than 0.8. Yet the AUC scores, which include the
rankings of non-salience events, are rather close
to random. This shows that the salient events in
the origin documents form a more cohesive group,
making them more robust against the intruders; the
non-salient ones are not as cohesive.

In both settings, KCE produces higher SA-AUC
than Frequency at the first 30%. However, in set-
ting 2, KCE starts to produce lower SA-AUC than
Frequency after 30%, then gradually drops to 0.5
(random). This phenomenon is expected since the
asymmetry between origins and intruders allow
KCE to distinguish them at the beginning. When
all intruders are added, KCE performs worse be-
cause it relies heavily on the relations, which can
be also formed by the salient intruders. This phe-
nomenon is observed only on the salient intruders,
which again confirms the cohesive relations are
found among salient events.

In conclusion, we observe that the salient events
form tight groups connected by discourse rela-
tions while the non-salient events are not as related.
The observations imply that the main scripts in
documents are mostly anchored by small groups
of salient events (such as the “Trial” script in



Figure 3: Intruder study results. X-axis shows the percentage of intruders inserted. Y-axis is the AUC score
scale. The left and right figures are results from salient and non-salient intruders respectively. The blue
bar is AUC. The orange shaded bar is SA-AUC. The line shows the SA-AUC of the frequency baseline.

Example 1). Other events may serve as “back-
grounds” (Cheung et al., 2013). Similarly, Choubey
et al. (2018) find that relations like event corefer-
ence and sequence are important for saliency.

8 Conclusion

We propose two salient detection models, based
on lexical relatedness and semantic relations. The
feature-based model with lexical similarities is ef-
fective, but cannot capture semantic relations like
scripts and frames. The KCE model uses kernels
and embeddings to capture these relations, thus
outperforms the baselines and feature-based mod-
els significantly. All the results are tested on our
newly created large-scale event salience dataset.
While the automatic method inevitably introduces
noises to the dataset, the scale enables us to study
complex event interactions, which is infeasible via
costly expert labeling.

Our case study shows that the salience model
finds and utilize a variety of discourse relations:
script chain (attack and kill), frame argument re-
lation (business and increase), quasi-identity (911
attack and attack). Such complex relations are not
as prominent in the raw word embedding space.
The core message is that a salience detection mod-
ule automatically discovers connections between
salience and relations. This goes beyond prior cen-
tering analysis work that focuses on lexical and
syntax and provide a new semantic view from the
script and frame perspective.

In the intrusion test, we observe that the small
number of salient events are forming tight con-
nected groups. While KCE captures these relations
quite effectively, it can be confused by salient in-
trusion events. The phenomenon indicates that the
salient events are tightly connected, which form

the main scripts of documents.
This paper empirically reveals many interest-

ing connections between discourse phenomena and
salience. The results also suggest that core script
information may reside mostly in the salient events.
Limited by the data acquisition method, this paper
only models discourse salience as binary decisions.
However, salience value may be continuous and
may even have more than one aspects. In the fu-
ture, we plan to investigate these complex settings.
Another direction of study is large-scale semantic
relation discovery, for example, frames and scripts,
with a focus on salient discourse units.
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